α-Synuclein Mutation Inhibits Endocytosis at Mammalian Central Nerve Terminals.
نویسندگان
چکیده
UNLABELLED α-Synuclein (α-syn) missense and multiplication mutations have been suggested to cause neurodegenerative diseases, including Parkinson's disease (PD) and dementia with Lewy bodies. Before causing the progressive neuronal loss, α-syn mutations impair exocytosis, which may contribute to eventual neurodegeneration. To understand how α-syn mutations impair exocytosis, we developed a mouse model that selectively expressed PD-related human α-syn A53T (h-α-synA53T) mutation at the calyx of Held terminals, where release mechanisms can be dissected with a patch-clamping technique. With capacitance measurement of endocytosis, we reported that h-α-synA53T, either expressed transgenically or dialyzed in the short term in calyces, inhibited two of the most common forms of endocytosis, the slow and rapid vesicle endocytosis at mammalian central synapses. The expression of h-α-synA53Tin calyces also inhibited vesicle replenishment to the readily releasable pool. These findings may help to understand how α-syn mutations impair neurotransmission before neurodegeneration. SIGNIFICANCE STATEMENT α-Synuclein (α-syn) missense or multiplication mutations may cause neurodegenerative diseases, such as Parkinson's disease and dementia with Lewy bodies. The initial impact of α-syn mutations before neuronal loss is impairment of exocytosis, which may contribute to eventual neurodegeneration. The mechanism underlying impairment of exocytosis is poorly understood. Here we report that an α-syn mutant, the human α-syn A53T, inhibited two of the most commonly observed forms of endocytosis, slow and rapid endocytosis, at a mammalian central synapse. We also found that α-syn A53T inhibited vesicle replenishment to the readily releasable pool. These results may contribute to accounting for the widely observed early synaptic impairment caused by α-syn mutations in the progression toward neurodegeneration.
منابع مشابه
Brain-derived neurotrophic factor inhibits calcium channel activation, exocytosis, and endocytosis at a central nerve terminal.
Brain-derived neurotrophic factor (BDNF) is a neurotrophin that regulates synaptic function and plasticity and plays important roles in neuronal development, survival, and brain disorders. Despite such diverse and important roles, how BDNF, or more generally speaking, neurotrophins affect synapses, particularly nerve terminals, remains unclear. By measuring calcium currents and membrane capacit...
متن کاملIntegration of Synaptic Vesicle Cargo Retrieval with Endocytosis at Central Nerve Terminals
Central nerve terminals contain a limited number of synaptic vesicles (SVs) which mediate the essential process of neurotransmitter release during their activity-dependent fusion. The rapid and accurate formation of new SVs with the appropriate cargo is essential to maintain neurotransmission in mammalian brain. Generating SVs containing the correct SV cargo with the appropriate stoichiometry i...
متن کاملDevelopmental change in the calcium sensor for synaptic vesicle endocytosis in central nerve terminals.
Synaptic vesicle endocytosis is stimulated by calcium influx in mature central nerve terminals via activation of the calcium-dependent protein phosphatase, calcineurin. However, in different neuronal preparations calcineurin activity is either inhibitory, stimulatory or irrelevant to the process. We addressed this inconsistency by investigating the requirement for calcineurin activity in synapt...
متن کاملIncreased Expression of α-Synuclein Reduces Neurotransmitter Release by Inhibiting Synaptic Vesicle Reclustering after Endocytosis
The protein alpha-synuclein accumulates in the brain of patients with sporadic Parkinson's disease (PD), and increased gene dosage causes a severe, dominantly inherited form of PD, but we know little about the effects of synuclein that precede degeneration. alpha-Synuclein localizes to the nerve terminal, but the knockout has little if any effect on synaptic transmission. In contrast, we now fi...
متن کاملSnaring the Function of α-Synuclein
It is well established that the abundant neuronal protein ␣-synuclein has a causal role in Parkinson's disease , yet the normal functions of this protein remain unclear. In this issue of Cell, Chandra et al. (2005) reveal that ␣-synuclein acts as a molecular chaperone, assisting in the folding and refolding of synaptic proteins called SNAREs. These proteins are crucial for release of neurotrans...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 36 16 شماره
صفحات -
تاریخ انتشار 2016